RF Fields Group - Antenna Metrology

1998 Internal Symposium on Advanced Radio Technologies September 9-11, 1998

Andrew G. Repjar repjar@boulder.nist.gov Radio Frequency Technology Division National Institute of Standards and Technology Boulder, CO 80303 (303) 497-5703

Selected Topics

- 1. Planar near-field theory
- 2. Array diagnostics
- 3. Low slidelobe Antennas
- 4. Quite zone evaluation
- 5. Thermal holography

Planar Near-field Measurement

PLANR NEAR-FIELD SCANNING

TRANSMISSION EQUATION

COMPARISON OF ANTENNA MEASUREMENT METHODS

NEAR-FIELD METHOD

Advantages

- Relatively small I space
- No weather problems
- No interference (security)
- Complete pattern (3-d), gain, polarization data obtained, vectorial data all at arbitrary distances
- Antenna interactions treatable
- High accuracy
- Useful for arrays
- Much information during design stages

<u>Disadvantages</u>

- Automated system required
- Large amounts of data to acquire and process
- Computer analysis required
- Large apertures and wide beams pose some scanning problems (many problems overcome with non-planar scanning)

COMPARISON OF ANTENNA MEASUREMENT METHODS

FAR-FIELD METHOD

Advantages

- Relatively simple procedure
- No complicated analysis required
- Faster for limited information requirements
- Good for comparison

Disadvantages

- Large distances required
- High towers required
- Limited information obtained
- Weather problems
- Interference and security problems

Back Transform Techniques

- Can transform toward the source
- Must eliminate evanescent waves
- Spatial Resolution is about 1 wavelength (as in optics)
- Detect faulty elements
- Adjust excitation
- Merged spectrum

PASS Array Testing

- Array consists of 18 sub-arrays each with 128 elements, 3 bit phase shifters.
- Sub-arrays had high element failure rate due to corrosion problems.
- Gain of the array was not adequate to link up to the satellite.
- Complete repair from contractor would cost \$230K and take 2 years
- Sub-arrays were measured to identify faulty elements using the planar near-field measurements at NIST.
- Air Force personnel performed on-site repairs.
- Planar near-field technology was transferred to Air Force.
- Complete repair by McClellan Air Force Base costs \$80K and required only 3 months.

Aperture Amplitude

8 X 16 element sub-array

gain prior to repair gain after faulty elements repaired gain after bad sma connecter replaced 24.80 dB 25.08 dB 26.00 dB

Low Slide-Lobe Antennas

- ULSA
- AWACS
- Fire Finder
- THAAD

Measurement Goals

- ±5 dB at -55 dB rel peak
- ±20 s beam steering
- $\pm 0.2 \text{ dB gain}$

ANTENNA ON NEAR-FIELD SCANNER, POSITION 2

14

Comparison of NF and FF Results

Frequency=3.0 GHz

Quiet-Zone

field quality **limits the accuracy** of RCS and antenna measurements on compact and far-field ranges.

Incident field information can be used to

- assess measurement uncertainty
- compensate measurements for nonideal illumination
- **image** sources of unwanted radiation

Our SAR/SNF Configuration

A window function has been applied to increase contrast.

Comparison of True and Measured Patterns

Comparison of True and Compensated Patterns

Thermal Imaging/Holography

- "Phaseless measurements"
- Interference pattern recorded with a thermal camera
- Sensitivity is an issue
- Suitable for production testing?

Holographic Recording of Near Field

Antenna, Reference Horn, and Resistive Screen

Infrared Images of Antenna Near Fields

Reference Horn

Patch Array

Holograms of Patch Array with Horn Reference

0 Degrees

180 Degrees

Comparison of Far-Field Patterns

